二分查找
请对一个有序数组进行二分查找[1,8,10,89,1000,1234]
,输入一个数查看该数组是否存在此数,并且求出下标,如果没有就提示“没有这个数”。
二分查找的思路分析:
1、首先确定该数组的中间的下标 mid= (left +right) / 2
2、然后让需要查找的数findval和arr[mid]比较
findval > arr[mid],说明要查找的数在mid的右边,需要递归的向右查找
findval < arr[mid],说明要查找的数在mid的左边,需要递归的向左查找
findval == arr[mid],说明找到,就返回
什么时候我们需要结束递归?
1、找到就结束递归
2、递归完整个数组,仍然没有找到findval,也需要结束递归,即left>right就需要退出
/**
*二分查找算法
* @param arr 数组
* @param left 左边的索引
* @param right 右边的索引
* @param findVal 要查找的值
* @return 如果找到就返回下标,如果没有找到,就返回 -1
*/
public static int binarySearch(int[] arr, int left, int right, int findVal) {
// 当 left > right 时,说明递归整个数组,但是没有找到
if (left > right) {
return -1;
}
int mid = (left + right) / 2;
int midVal = arr[mid];
if (findVal > midVal) { // 向 右递归
return binarySearch(arr, mid + 1, right, findVal);
} else if (findVal < midVal) { // 向左递归
return binarySearch(arr, left, mid - 1, findVal);
} else {
return mid;
}
}
插值查找
插值查找算法类似于二分查找,不同的是插值查找每次从自适应mid处开始查找。将折半查找中的求mid索引的公式,low表示左边索引left
,high表示右边索引right
,key 就是findVal
。
对于数据量较大,关键字分布比较均匀的查找表来说,采用插值查找速度较快。
关键字分布不均匀的情况下,该方法不一定比折半查找(二分查找)要好。
/**
*插值查找算法 说明:要求数组是有序的
* @param arr 数组
* @param left 左边索引
* @param right 右边索引
* @param findVal 查找值
* @return 如果找到,就返回对应的下标,如果没有找到,返回-1
*/
public static int insertValueSearch(int[] arr, int left, int right, int findVal) {
//注意:findVal < arr[0] 和 findVal > arr[arr.length - 1] 必须需要
//否则我们得到的 mid 可能越界
if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {
return -1;
}
// 求出mid, 自适应
int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
int midVal = arr[mid];
if (findVal > midVal) { // 说明应该向右边递归
return insertValueSearch(arr, mid + 1, right, findVal);
} else if (findVal < midVal) { // 说明向左递归查找
return insertValueSearch(arr, left, mid - 1, findVal);
} else {
return mid;
}
}
斐波那契查找
黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神奇的数字,会带来意想不到的效果。
斐波那契数列{1,1,2,3,5,8,13,21,34,55}
,发现斐波那契数列的两个相邻数的比例,无限接近黄金分割值0.618。
斐波那契查找原理与前两种相似,仅仅改变了中间结点(mid)的位置,mid不再是中间或插值得到,而是位于黄金分割点附近,即 mid=low+F(k-1)-1
(F代表斐波那契数列),如下所示:
由斐波那契数列 F[k]=F[k-1]+F[k-2]
的性质,可以得到 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1
。该式说明:只要顺序表的长度为F[K]-1
,则可以将该表分成长度为F[k-1]-1
和F[k-2]-1
的两段,即如上图所示。从而中间位置为 mid=low+F(k-1)-1
。
类似的,每一子段也可以用相同的方式分割。
但顺序表长度n不一定刚好等于F[K]-1
,所以需要将原来的顺序表长度n增加至 F[k]-1
。这里的k值只要能使得 F[K]-1
恰好大于或等于n即可。
public class FibonacciSearch {
public static int maxSize = 20;
public static void main(String[] args) {
int [] arr = {1,8, 10, 89, 1000, 1234};
System.out.println("index=" + fibSearch(arr, 189));// 0
}
//因为后面我们mid=low+F(k-1)-1,需要使用到斐波那契数列,因此需要先获取到一个斐波那契数列
//非递归方法得到一个斐波那契数列
public static int[] fib() {
int[] f = new int[maxSize];
f[0] = 1;
f[1] = 1;
for (int i = 2; i < maxSize; i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f;
}
/**
* 使用非递归的方式编写斐波那契查找算法
* @param a 数组
* @param key 我们需要查找的关键码(值)
* @return 返回对应的下标,如果没有-1
*/
public static int fibSearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;
int k = 0; //表示斐波那契分割数值的下标
int mid = 0; //存放mid值
int f[] = fib(); //获取到斐波那契数列
//获取到斐波那契分割数值的下标
while(high > f[k] - 1) {
k++;
}
//因为 f[k] 值可能大于 a 的长度,因此需要使用Arrays类,构造一个新的数组,并指向temp[]
//不足的部分会使用0填充
int[] temp = Arrays.copyOf(a, f[k]);
//实际上需求使用a数组最后的数填充 temp
//举例:
//temp = {1,8, 10, 89, 1000, 1234, 0, 0} => {1,8, 10, 89, 1000, 1234, 1234, 1234,}
for(int i = high + 1; i < temp.length; i++) {
temp[i] = a[high];
}
// 使用while来循环处理,找到数key
while (low <= high) { // 只要这个条件满足,就可以找
mid = low + f[k - 1] - 1;
if(key < temp[mid]) { //我们应该继续向数组的前面查找(左边)
high = mid - 1;
//1. 全部元素 = 前面的元素 + 后边元素
//2. f[k] = f[k-1] + f[k-2]
//因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
//即 在 f[k-1] 的前面继续查找 k--
//即下次循环 mid = f[k-1-1]-1
k--;
} else if ( key > temp[mid]) { // 我们应该继续向数组的后面查找(右边)
low = mid + 1;
//为什么是k -=2
//说明
//1. 全部元素 = 前面的元素 + 后边元素
//2. f[k] = f[k-1] + f[k-2]
//3. 因为后面我们有f[k-2] 所以可以继续拆分 f[k-2] = f[k-3] + f[k-4]
//4. 即在f[k-2] 的前面进行查找 k -=2
//5. 即下次循环 mid = f[k - 1 - 2] - 1
k -= 2;
} else { //找到
//需要确定,返回的是哪个下标
if(mid <= high) {
return mid;
} else {
return high;
}
}
}
return -1;
}
}
评论区